Utilização de inteligência artificial (redes neurais de inteligência artificial) para a classificação de patogenicidade de amostras de Escherichia Coli isoladas de frangos de corte

##plugins.themes.bootstrap3.article.main##

C. T. P. Salle
A. C. G. P. Rocha
G. F. Souza
F. O. Salle
L. B. Moraes
V. P. Nascimento
H. L. S. Moraes

Resumo

Os avanços nas pesquisas e nas ferramentas utilizadas vêm resultando no maior entendimento dos mecanismos de patogenicidade das E. coli e cada vez mais é demonstrada a grande importância da interação dos diversos fatores de virulência na determinação da patogenicidade. Entretanto, a diferenciação de cepas virulentas e avirulentas continua sendo um problema no diagnóstico e, por consequência, na tomada de decisão pelos veterinários de campo. Neste trabalho, são apresentadas três redes neurais de inteligência artificial que foram desenvolvidas por análise dos genes responsáveis pela capacidade de adesão, fimbria P (papC) e fimbria F11 (felA), produção de colicinas (cvaC), presença de aerobactina (iutA), resistência sérica (iss), hemaglutinina temperatura sensível (tsh) e presença dos antígenos capsulares K1 e K5 (kpsII), motilidade e do índice de patogenicidade (IP) para a predição ou classificação de patogenicidade de cepas de E. coli sem a necessidade da utilização de animais. Na Rede 1, utilizando 11 categorias de IP houve 54,27% de acerto. No intuito de melhorar o desempenho do modelo, foi criada uma segunda rede, utilizando três categorias de IP com classificação correta de 80,55%. Na tentativa de melhorar ainda mais seu desempenho, passou-se a trabalhar com apenas duas categorias, construindo, dessa forma, a Rede 3. Com essa nova configuração a classificação correta foi de 83,96%. As características do modelo permitem a classificação da patogenicidade das amostras isoladas nos galpões com bom grau de confiabilidade, levadas em conta a sensibilidade e a especificidade. Com esta metodologia a patogenicidade da amostra é conhecida sem a necessidade da inoculação de animais. 

##plugins.themes.bootstrap3.article.details##

Como Citar
SALLE, C. T. P.; ROCHA, A. C. G. P.; SOUZA, G. F.; SALLE, F. O.; MORAES, L. B.; NASCIMENTO, V. P.; MORAES, H. L. S. Utilização de inteligência artificial (redes neurais de inteligência artificial) para a classificação de patogenicidade de amostras de Escherichia Coli isoladas de frangos de corte. Revista de Educação Continuada em Medicina Veterinária e Zootecnia do CRMV-SP, v. 9, n. 3, p. 46-46, 11.
Seção
RESUMOS ENDESA